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Abstract

The acoustic imaging problem consists of mapping the directions and
intensities of sound sources using microphone arrays. These maps are used
to design airplanes, cars and trains that are more efficient aerodynamically
and less noisy, and also to analyze structures such as concert halls and
turbines. In this chapter we describe ways to accelerate the computation
of acoustic images, in particular the Kronecker array transform (KAT).
We start by giving a short description of the problem of acoustic imaging,
and the main state-of-the-art methods for solving it, from the standard
beamforming method, through more accurate solutions such as DAMAS2
and covariance-fitting. We proceed by describing the KAT and how it can
be applied to accelerate these methods, or to make possible the application
of even more powerful methods, such as sparse regularized estimation
techniques, which without the KAT would be too computer-intensive to
be used in acoustic imaging.

1 Introduction

An acoustic image is generated when acoustic levels are coded into a colormap,
generating an image of sound level as a function of direction of arrival. Acoustic
images are commonly associated with the problem of detecting and character-
izing acoustic sources.

Acoustic images can be superimposed over photographs, for instance, to
identify unknown sound sources or to compare the relative sound power emitted
by a set of sound sources. They may be used for noise reduction and analysis,
typically present in the prototyping stages of machine and vehicle development
[14], and in the analysis of wind-tunnel measurements [16], turbine noise [22],
and in vortex-borne noise detection [4].

Acoustic levels are associated with a sound field, which is an acoustic wave
field resulting from the interaction between an acoustic or a vibration source and
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an elastic medium, such as air or water. Acoustic levels at a point in the sound
field can be either directly measured or, when that is not possible, estimated
from measurements elsewhere in the same sound field. Such measurements are
usually taken using an acoustic sensor array, such as, for example, a microphone
or a hydrophone array.

A straightforward method to detect the presence of a sound source is to scan
a measurement grid over a closed surface with an intensity probe [10]. If the
total average intensity leaving this surface is greater than zero, then there is at
least one sound source present inside this surface [17].

If one wishes, however, to more precisely characterize the sound source or
even estimate the source’s surface velocity out of acoustic measurements, then
near-field acoustic holography (NAH) should be used [38]. By adequately sam-
pling a surface containing all of the sources that generate the desired sound
field, NAH allows the extrapolation of the field’s behavior in other regions of
the source-free space or even allows one to identify, separate and characterize
the sources that generated the wave field.

As with any wave field, an acoustic wave field can be decomposed into its
active and reactive components [30] and only the active component can trans-
port the radiated acoustic energy far away from the sound source—the far-field.
The reactive component is composed of evanescent waves whose energy strongly
decay while still in the vicinity of the sound source—the near-field. That is the
reason why if complete reconstruction of the sound field near the sound source
is desired, near-field measurements have to be conducted. A recently proposed
method, however, can image the sound pressure field using laser tomography
measurements conducted in the source’s far-field [24].

Acoustic imaging, on the other hand, focus on a set of methods that can esti-
mate the sound levels arriving at a point in space from different directions, that
is, no attempt is made to estimate the whole sound field. Using these methods,
one can verify the presence of sound sources and their directions in relation to
a microphone array. The sound level arriving from each direction can be esti-
mated through the use of spatial filters matched to both the array geometry and
the source directions, or through the solution of a global optimization problem.
Although these methods can be designed to suit several design criteria, they
are all based on specific models for the signals received at the microphones,
and their performance will depend on how well the models used correspond to
reality. The plane wave model is most commonly used and is often adequate
for sources in the far field. Under this assumption it is possible to estimate the
sound intensity arriving at the microphone array from each source in the sound
field.

The geometry of the microphone array will directly influence the quality of
the acoustic image obtained. A measurement taken with a microphone array
can be understood as a spatial sampling of the sound field. Traditional imaging
techniques will pass these sampled signals through a spatial filter that acts as
a window function convolved with the impinging sound field [18]. Microphone
arrays usually have a reduced number of sensors, which results in window func-
tions with a wide beamwidth and, consequently, in a smeared acoustic image.
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Several methods have been proposed to increase image resolution without
increasing the number of sensors in the array, either by changing the geometry
of the array to reduce sidelobes [13, 40]; applying deconvolution techniques to
eliminate the effect of the convolution with the response function [8, 9, 36]; or
using regularized optimization [41]. These methods improve results, but have
the drawback of increased computational costs as they involve the iterative
solution of an optimization problem containing products of vectors with rather
large matrices.

Furthermore, any imperfections in microphone positioning and gain will re-
sult in a different response function, mismatched to the designed spatial filters,
and consequently resulting in errors in the estimated acoustic image. The in-
fluence of these imperfections can be countered by the calibration of the array,
which will be briefly discussed at the end of the chapter.

This chapter describes three methods for accelerating the calculation of
vector-matrix products required for all the above mentioned methods: the non-
equispaced in time and frequency fast Fourier transform (NNFFT), the non-
equispaced fast Fourier transform (NFFT), and the new Kronecker array trans-
form (KAT). The NNFFT is the most general, but slowest, acceleration method.
It can be employed for any array geometry or space parametrization (that is, any
choice of directions toward which the array will “look”). The NFFT is faster,
but is restricted to a uniformly-sampled choice of look directions. Finally, the
KAT is the fastest method, but both the array and the look directions must
be organized in a separable geometry (i.e., a possibly non-uniform rectangular
grid). The KAT however, unlike the other methods, can be extended to the cal-
culation of acoustic images with sources closer to the microphone array, when
some of the far-field approximations are no longer valid [26,27].

The most important advantage of the acceleration methods, and of the KAT
in particular, is that they allow one to use more advanced reconstruction algo-
rithms, such as sparse or regularized methods, for larger problems (i.e., with
more microphones and look directions).

2 Signal model

The acoustic imaging techniques discussed in this chapter are all model-based
techniques, i.e., they use different strategies to solve an inverse problem based on
a wave propagation model. The signal model that will be used throughout the
chapter is based on the following assumptions. First, we assume that all sources
lay in the far field and thus each wave front that arrives at the microphone
array is a plane wave. Second, we assume that the sound intensity at the array
is low enough that superposition applies (this is not a restrictive assumption
in general). Finally, we assume that all sources are statistically uncorrelated
(this assumption is not true in general, but is necessary to keep the problem
computationally feasible.)
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2.1 Wave propagation

The linearized acoustic wave equation in Cartesian coordinates is [38]

∂2p

∂x2
+

∂2p

∂y2
+

∂2p

∂z2
=

1

c2
∂2p

∂t2
, (1)

where c is the speed of sound in air. The solution to (1) can be decomposed

at a point x =
[
x y z

]T
sufficiently far from all sources as a superposition

of plane waves propagating in different directions [32]. A single plane wave
traveling along the direction k assumes the form

x(t,p) = f(t− kTp,u) = f(t+ ωuTp/c,u),

where k =
[
kx ky kz

]T
is the wavenumber vector, a vector that points in the

direction of propagation of the wave, with magnitude ‖k‖2 = ω/c (‖ · ‖2 is the
Euclidean norm), and u = −ck/ω is a unit-length vector that points towards
the direction from which the wave is arriving at the array (see Figure 1). If the
waveform f(t,u) has a single frequency, f(t,u) = F (ω,u)ejωt, then the signal
at a point p in space has the form x(t,p) = X(ω,p)ejωt, with1

X(ω,p) = F (ω,u)ej
ω
c
uTp = F (ω,u)e−jkTp. (2)
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Figure 1: Plane wave and M -element microphone array.

We now use an array with M microphones to sample this sound field. The

position of each microphone is given by pm =
[
xm ym zm

]T
. We write the

signal sensed by each microphone when the plane wave arrives at the array from

1We remind the reader that model (2) in general is an approximation, valid for a single
plane wave in the vicinity of a point p. Since it does not consider attenuation or other
distortions suffered by the signal, f(t) is not the signal actually emitted by the source, but
rather the signal arriving at point p from a certain direction u, using the phase at the origin
p = 0 as a time reference. If the source is sufficiently far, the waveform f(·) will not change
on a neighborhood of p, only the phase at each point.
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direction u (as shown in Figure 1) as

X(ω) =








X(ω,p1)
X(ω,p2)

...
X(ω,pM )







=









A1(ω,u)e
jωuTp1/c

A2(ω,u)e
jωuTp2/c

...

AN (ω,u)ejωuTpM/c









. (3)

Am(ω,u) = Gm(ω,u) · F (ω,u) has a component Gm(ω,u) proportional to the
microphone’s sensitivity and directivity in addition to the component F (ω,u)
relative to the arriving signal. For the time being we assume that all micro-
phones are omnidirectional and that they are all adequately calibrated, so that
Gm(ω,u) = 1, and (3) simplifies to

X(ω) = F (ω,u)









ejωuTp1/c

ejωuTp2/c

...

ejωuTpM/c









∆
= F (ω,u)v(u), (4)

where v(u) is known as the array manifold vector. It contains the relative
delays with which the plane wave propagating from direction −u reaches each
of the array’s sensors. A microphone array will be able to differentiate between
plane waves arriving from different directions by the relative delays between the
signals at each microphone. The array manifold vector has a fundamental role
in acoustic imaging because it is a concise and convenient way of representing
these delays, as we show next. Consider the microphone at position p1. Then

kTp1 = −
ω

c
uTp1 = −

ω

c
‖p1‖2 cos θ

∆
= ωτ1,

where θ is the angle between u and p1, as shown in Figure 2, and τ1 is the
delay at p1, using the phase at the origin as reference, for a wave arriving from
direction −u. Note that the product of F (ω,u) and each entry of v(u) is of the
form e−jωτiF (ω,u), and thus corresponds to the application of a delay to f(t).

2.2 Superposition of sound sources

If the sound field next to the array is linear and all sources are far enough ac-
cording to the maximum wavelength and maximum array dimension, the signal
received at the microphones will be the superposition of an infinite number of
plane waves (for a detailed discussion, see [32]). Of course, in general, a discrete
approximation is computed, which corresponds to approximating the signals re-
ceived at the array as a superposition of a finite number of plane waves coming
from certain previously chosen directions, as shown in Figure 3. This sam-
pling in u-space corresponds to choosing a finite number of directions u1 . . .uN
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p1

0

θ

u

‖p1‖2 cos θ = −cτ1

Figure 2: Relative delay for a plane wave arriving from direction k = −u. Note
that in this example, since the wavefront arrives at p1 before it reaches the
origin 0, the delay τ1 is negative.

un

uℓ

Array

Figure 3: Sampling in u-space.

towards which the array will “look”, resulting in a model

X(ω) =

N∑

n=1

F (ω,un) · v(un) =
[
v(u1) . . . v(uN )

]






F (ω,u1)
...

F (ω,uN )




 . (5)

We are assuming for the time being that the signals coming from all directions
are deterministic. In this case, the (discretized) acoustic image we want to
estimate is defined to be the square power for each frequency and direction of

the incoming signal, i.e., Y (ω,un)
∆
= |F (ω,un)|

2.
We now need to expand our model to include more general kinds of sig-

nals, letting the signals f(t) arriving from each direction be stationary random
processes. In this case, a direct model like (5) would not be available (since sta-
tionary processes do not have finite energy, only the power spectrum is defined).
A detailed and precise explanation would take too long, so we refer the reader
to [32]. A way around the technical difficulties is to use the discrete Fourier
transform (DFT). Define the DFTs of the microphone and source signals over
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a window of length K, using a proper sampling rate ∆t as

F̂ (ωk,u) =

K−1∑

p=0

f(p∆t,u)e−j2πkp/K , (6)

X̂(ωk) =
K−1∑

p=0

x(p∆t)e−j2πkp/K , 0 ≤ k ≤ K − 1, (7)

where ωk
∆
= 2πp/K. With these definitions, (5) still holds approximately, with

the approximation becoming better as the window length K grows [32].
Define V =

[
v(u1) . . . v(uN )

]
. In this case, the autocorrelation matrix

of X̂(ωk) can be written as

Rx(ωk) = E{X̂(ωk)X̂
H
(ωk)} = V RF (ωk)V

H , (8)

where E{·} is the expected value, and the source autocorrelation matrix is

RF (ωk) = E












F̂ (ωk,u1)
...

F̂ (ωk,uN )






[

F̂ ∗(ωk,u1) . . . F̂ ∗(ωk,uN )
]







. (9)

Note that the acoustic image corresponds to the diagonal entries of RF (ωk):

Y (ωk,un) = [RF (ωk)]n,n = E{|F̂ (ωk,un)|
2}. (10)

In general, RF (ωk) will be a full matrix (meaning that signals arriving from
different directions may be correlated). However, if N is large (as we would
like it to be, in order to compute an acoustic image with good resolution),
taking account of all the N(N−1)/2 different correlations would not be feasible,
so it is usual to assume that there is no correlation. This is, of course, an
approximation, which may create artifacts in the estimated acoustic image.

From now on we omit the frequency ωk in order to simplify the notation.
Under the assumption of uncorrelated signals, the expression for Rx simplifies
to

Rx = E{X̂X̂
H
} =

N∑

n=1

Y (un) · v(un)v
H(un), (11)

so there is a linear relationship between the autocorrelation matrix of the mi-
crophone signals (which can be estimated directly from observations) and the
desired acoustic image.

This linear relationship becomes more apparent if we rewrite (11) as follows.
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For matrices A = [aij ] and B of any dimensions, define

vec(A)
∆
=













a11
a21
...

a12
a22
...













, A⊗B
∆
=






a11B a12B . . .
a21B a22B . . .

...
...

. . .




 .

The vec(·) operator therefore corresponds to stacking the columns of a matrix
one on top of the other, and the Kronecker product A ⊗ B of two matrices
corresponds to a block matrix in which each block entry is an element of A
multiplied by B. A property of Kronecker products is that [15]

vec(ACB) = (BT ⊗A) vec(C), (12)

for any matrices A, B and C for which the product ACB is defined.
Applying (12) to each term v(un)Y (un)v

H(un) in (11), we obtain

rx
∆
= vec(Rx) =

[
v∗(u1)⊗ v(u1) . . . v∗(uN )⊗ v(uN )

]

︸ ︷︷ ︸

∆
=A






Y (u1)
...

Y (uN )






︸ ︷︷ ︸

∆
=y

, (13)

where we defined the vector y whose elements are the acoustic image pixels,
the vector rx representing the microphone correlations, and the matrix A that
relates them.

2.3 Additive noise

Real measurements are always corrupted by noise, such as thermal noise at the
sensors or quantization noise after analog-to-digital conversion. We model the
presence of noise as an additive term, replacing (5) by

X̂ =

N∑

n=1

F̂ (un) · v(un) + ẑ, (14)

where ẑ is a vector with the additive noise at each microphone at frequency
ωk. We assume that the noise is uncorrelated with our signals of interest and,
consequently, the autocorrelation matrix of X̂ is updated to

Rx =

N∑

n=1

[
Y (un) · v(un)v

H(un)
]
+Rz, (15)

where Rz = E{ẑẑH} is the autocorrelation matrix of the noise component. If
the noise is uncorrelated between the sensors, then Rz = σ2

zI, where I is the
identity matrix.
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3 Methods for acoustic imaging

There are many methods to estimate an acoustic image, with increasing levels of
sophistication. All methods mentioned below estimate the sound levels arriving
from different directions, assuming the array to be in the far field of all sources.

Common array applications such as antenna arrays, radar and sonar work
with narrowband signals. In this case, a single manifold vector matched to the
central frequency of the signal can be used to model the plane wave. Acous-
tic signals, however, are commonly broadband in nature. All of the methods
that will be presented in this section calculate the acoustic image using the
manifold vector, which depends on ω. Therefore, the acoustic image must be
calculated independently for several narrowband-filtered versions of the signal
and, if desired, later added together to form a broadband image.

3.1 Spatial filtering

A spatial filter is implemented as a weighted sum of the signals captured by the
sensors, such that

Z = wHX̂, (16)

where w =
[
w1 w2 · · · wM

]T
is a complex weight vector.

3.1.1 Deterministic beamformer

There are several ways to calculate w, the most straightforward manner being
deterministic beamformers. In the Bartlett beamformer the spatial filter w is
chosen so that the filter output power is maximized when the array is excited
by a plane wave arriving from −u [21]. Thus, we aim to solve

argmax
w

E
{

|Z(ω)|
2
}

. (17)

Substituting (14) and (16) into (17) and assuming that the sound field is com-
posed of a single plane wave propagating in direction −u, we obtain the cost
function

J =
∣
∣wHv(u)

∣
∣
2
RS + ‖w‖

2
σ2
n. (18)

To avoid the trivial solution ‖w‖ → ∞, the Barlett beamformer adds the re-
striction ‖w‖ = 1 and uses the Cauchy-Schwarz inequality to maximize J , which
results in

wBF(u) =
v(u)

‖v(u)‖
. (19)

Thus, the Bartlett beamformer acts by applying a delay to the signals captured
by each sensor, so that the signals arriving from −u are aligned in time and
thus constructively added. Note that the Bartlett beamformer is a deterministic
method since its weights do not depend on the statistics of the incoming signal,
but only on the “listening” direction and the geometry of the array.
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Another very common deterministic beamformer is the delay-and-sum (DAS)
beamformer [32]. Similarly to the Bartlett beamformer, the DAS beamformer
seeks to compensate for the relative delay at each sensor and then averages the
resulting signals, thus

wDAS(u) =
1

M
v(u) =

v(u)

vH(u)v(u)
. (20)

The DAS beamformer is equivalent to the Bartlett beamformer except for a
scalar gain.

To obtain the acoustic image, we need to estimate the sound intensity coming
from each direction u in a pre-defined grid, to obtain a vector of estimates ŷ

to y. Using a fixed beamformer for each direction in the grid and assuming a
perfect estimate of the signal, we have

Ŷ (un) = E
{

|wH(un)X̂|2
}

= wH(un)Rxw(un). (21)

The expected value is approximated usually by estimating X̂ for a number L
of (possibly overlapping) length-K windows, and taking the average of |wHX̂|2

over the L windows.
Remark that using (12) and (13) with the DAS beamformer gives us,

Ŷ (un) =
1

M2
vH(un)Rxv(un)

=
1

M2
(vT (un)⊗ v∗(un))

T vec(Rx) =
1

M2
[A]Hn rx,

(22)

where [A]n denotes the n-th column of A, and thus the DAS beamformer is
equivalent to the operation

ŷ =
1

M2
AHrx, (23)

while the Bartlett beamformer corresponds to

ŷ =
1

M
AHrx. (24)

The artifacts in the image resulting from using these beamformers are better
understood thinking in terms of array point-spread functions (PSFs), and their
2-D convolution with the true acoustic image, as we mention further ahead in
Section 3.2 [32]. However, it is also useful to compare (23) and (13). We see
that ŷ may be equal to y only if A−1 = 1

M2A
H , which would only be true if the

columns of A were orthogonal (and N ≤ M2 for the inverse to exist). Since in
general these conditions are not met, we can expect the image estimated using
beamforming to have large artifacts.

3.1.2 Optimal beamformers

The conventional beamformer features a very simple implementation but has
the drawback of low image resolution, i.e. if two sound sources are placed too
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close to each other acoustic images obtained with the conventional beamformer
will not be able to resolve both sources. Numerous methods have been proposed
as an attempt to improve the image resolution and an important group of such
methods are the statistically optimal beamformers. Using the statistics of the
sound field, represented by the signals’ autocorrelation matrix, these methods
can reduce the influence of the neighboring sources resulting in an image with
better resolution. As a trade-off these methods are more computationally ex-
pensive as they all include the inversion of an autocorrelation matrix as a step
to calculate the optimal weights.

In [32, ch. 6] it is demonstrated that for the wide class of optimal beamformers—
a class which include the minimum variance distortionless response (MVDR)
beamformer, the minimum power distortionless response (MPDR) beamformer,
the minimum mean square error (MMSE) beamformer and the maximum sig-
nal to noise (SNR) beamformer—the resulting spatial filter is an MVDR beam-
former followed by a scalar filter dependent on the optimization criterion.

The MVDR beamformer minimizes the variance of the received signal Z(ω)
while keeping a unitary gain at the listening direction, i.e. wHv(u) = 1. This
optimization problem can be solve using Lagrange multipliers [32] and results
in

wH
MVDR(u) =

vH(u)R−1
z

vH(u)R−1
z v(u)

(25)

In practical implementations it may be difficult to estimate Rz if a signal is
always present in the direction of interest u. In this case, the MPDR beamformer
can be used with weights given by

wH
MPDR(u) =

vH(u)R−1
x

vH(u)R−1
x v(u)

. (26)

Note that Rx tends to be ill conditioned and Thikonov regularization is usually
necessary:

wH
MPDR(u) ≈

vH(u)[Rx + λI]−1

vH(u)[Rx + λI]−1v(u)
, (27)

where λ ≥ 0 is the regularization parameter, which must be carefully chosen for
good performance.

The acoustic image is generated in the same manner as with the conven-
tional beamforming using (21), that is, Ŷ (un) = E{|wH

MPDR(un)X|2}. It is not
difficult to verify that this is equivalent to

ŷ =
1

(vH(u)[Rx + λI]−1v(u))2
AH vec([Rx + λI]−1Rx[Rx + λI]−1).

3.2 Deconvolution methods

Consider a single plane wave traveling along direction −u. The estimated pixel
corresponding to a generic look direction un is given by (21). Considering the
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discrete model (10), we have2

Ŷ (un) = Y (u) ·wH(un)v(u)v
H(u)w(un)

∆
= Y (u) · P (un,u), (28)

For a fixed look direction un, the term P (un,u) = wH(un)v(u)v
H(u)w(un),

considered as a function of u, is the array’s point spread function (PSF), which
describes the gain applied by the array to an input plane wave arriving from
direction −u [32]. P (un,u) is defined over the entire space and can be inter-
preted as a spatial sampling function that should ideally be maximally sharp,
that is (again in our discrete model), equal to

P (un,u) = δun,u, (29)

where δun,u = 1 if u = un and zero otherwise. However, as microphone ar-
rays have a limited number of sensors, their typical PSF will present a larger
beamwidth and consequently a smeared acoustic image.

Now, calculating the acoustic image using (21) and considering a superposi-
tion of N sources as in (11) results in

Ŷ (un) =
N∑

ℓ=1

Y (uℓ) · P (un,uℓ). (30)

Equation (30) can be interpreted as a spatial convolution [38], i.e. when calcu-
lating an acoustic image with conventional or optimal beamformers the result
is, in fact, the convolution of the actual acoustic image with the array PSF.
This is a second way of explaining the smeared images produced by standard
beamformers (compare with (23)).

To reduce the smearing observed in beamforming, several deconvolution
techniques have been proposed [8, 9, 29, 36]. They use as inputs the PSF and
the image obtained with the DAS beamformer, and generally produce a better
approximation of the original source distribution.

3.2.1 DAMAS2

One of the most popular deconvolution methods is the deconvolution approach
for the mapping of acoustic sources (DAMAS) [3], later improved in [8] and
named DAMAS2. Denote by Y the 2-D acoustic image (i.e., y rearranged as

a two-dimensional image), and similarly by Ŷ the estimated image. DAMAS2

calculates a better approximation Ŷ for Y given the DAS estimate (denoted

below by Y̆ ) by iterating

Ŷ
(k+1)

= max

{

Ŷ
(k)

+
1

a

[

Y̆ −
(

P ∗ Ŷ
(k)

)]

,0

}

, (31)

2We restrict ourselves again to a discrete spacial distribution of sources, to avoid the long
detour necessary to explain adequately the continuous model.
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where ∗ denotes 2-D convolution, Ŷ
(k)

is the reconstructed image at iteration

k with Ŷ
(0)

= 0, P is the discretized PSF also arranged as a 2-D array, a =
∑

i,j |P |i,j , and max{·, ·} returns the pointwise maximum. This function is used
to guarantee strictly positive power estimates. Convolution can be implemented
as a multiplication in the wavelength domain [38] and, therefore, the DAMAS2
algorithm is able to efficiently produce a deconvolved or “clean” acoustic image.

3.3 Covariance fitting

Note that even though DAMAS2 is a state-of-the-art method for computation-
ally efficient acoustic imaging, it does not use any regularization other than
forcing pointwise non-negativity, i.e., it does not incorporate a prior model of
the source distribution.

Regularized signal reconstruction has been a topic of interest for many
decades, and gained significant momentum with the popularity of compressive
sensing [5,7]. Indeed, many image reconstruction problems can be recast as con-
vex optimization problems, which can be solved with computationally efficient
iterative methods. While many of these techniques were designed for imaging
applications, they have remained limited to fields such as medical image recon-
struction. Therefore, most of these developments have not yet been applied to
acoustic imaging.

Considering the presence of noise we rewrite (14) in the matrix form as

rx = Ay + vec{Rz} = Ay + σ2 vec{I}, (32)

assuming spatially uncorrelated noise. Note that the transfer matrix A has
usually more columns than rows, so (32) is underdetermined. Prior models
of the source distribution can be incorporated as constraints that allow the
underdetermined system of equations to be solved.

3.3.1 ℓ1-regularized least squares

Assume that the acoustic field arriving at the microphone array was generated
by only a few compact sources, that is, that the source distribution is sparse.
In this case we can apply a sparsity constraint to regularize the inversion prob-
lem, as suggested in [41], where the following convex optimization problem is
proposed

minimize
ŷ,σ2

∥
∥rx −Aŷ − σ2 vec{I}

∥
∥
2

2

subject to ŷi,j ≥ 0, σ2 ≥ 0, and ‖ŷ‖1 ≤ λ.
(33)

The ℓ1 constraint ‖ŷ‖1 ≤ λ serves to regularize the problem while forcing spar-
sity. λ is a regularization parameter.

Thanks to the ℓ1 regularization, the authors of [41] show using numerical ex-
amples that by solving (33) one can indeed reconstruct sparse images with very
high accuracy. Their proposal outperforms DAMAS2 regarding reconstruction
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accuracy due to the use of regularization and because no deconvolution was
involved.

Another option is to recast (33) as a basis pursuit with denoising problem
(BPDN), which has the form

minimize
ŷ

‖ŷ‖1

subject to ‖rx −Aŷ‖2 ≤ σ.
(34)

a kind of optimization problem that has been studied in detail in the compressive
sensing literature [35].

3.3.2 Total variation regularized least-squares

To address scenarios where the acoustic images are not sparse in their canonical
representations, another possibility is to reconstruct acoustic images with total
variation (TV) regularization.

The isotropic total variation norm is defined as

‖Y ‖TV =
∑

i,j

√

[∇xY ]
2
i,j + [∇yY ]

2
i,j (35)

where ∇x and ∇y are the first difference operators along the x and y dimensions
with periodic boundaries, and i and j are the indices in the x and y dimensions,
respectively.

The following optimization problem can then be solved

minimize
Ŷ

∥
∥
∥Ŷ

∥
∥
∥
TV

+ µ ‖rx −Aŷ‖
2
2

subject to [Ŷ ]i,j ≥ 0.

(36)

The first term measures how much an image oscillates. Therefore, it is smallest
for images with plateaus and monotonic transitions, and tends to privilege sim-
ple solutions with small amounts of noise. The second term ensures a good fit
between the reconstructed image and the measured data. This formulation was
first proposed for image denoising [28], and was later generalized and applied
successfully to many image reconstruction problems. This method provides ac-
curate and stable image reconstructions with guaranteed convergence.

4 Kronecker array transform

Using covariance-fitting or deconvolution methods, it is possible to obtain acous-
tic images with good resolution using moderate-sized arrays. These methods
are iterative, requiring repeated computation of matrix-vector products of the
form Aŷ and/or AH ŝ. Matrix A is however rather large in practice: for a
64-element array and a 128 × 128-pixel image, matrix A in (13) would be
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Figure 4: Non-uniform separable geometry. The dots represent positions of
microphones.

642 × 1282 = 4, 096 × 16, 384, making the more advanced methods very time-
consuming. We now show how the structure of A can be used to compute
matrix-vector products more efficiently.

There are three strategies for accelerating the computation of acoustic im-
ages. When each method can be employed depends on the array geometry (i.e.,
how the microphones are distributed in space) and on the sampling scheme (i.e.,
the choice of look directions un). The NNFFT (non-equispaced in time and fre-
quency fast Fourier transform), applicable to any array geometry or sampling
scheme; the NFFT (non-equispaced fast Fourier transform), valid for any planar
array geometry, and uniform sampling of the look directions; and the Kronecker
array transform, valid for planar and separable array geometries and separable
sampling of the look directions. By separable we mean that microphones and
look directions must be arranged in a rectangular grid, not necessarily uniform,
as the example shown in Figure 4.

The KAT provides the largest gain in computational cost, under the con-
straint of separable geometry and sampling. It can also be combined with the
other transforms to further decrease the cost. We describe the three transforms
next, additional details can be found in [26].

4.1 NNFFT

Given a sequence of points hn, the NNFFT is an approximate algorithm for
computing expressions of the form [19]

ĥm =
N∑

n=1

hne
−j2πbT

nDcm , 1 ≤ m ≤ M2, (37)
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where D is a diagonal matrix and bn, 1 ≤ n ≤ N , cm, 1 ≤ m ≤ M2 are vectors
whose entries satisfy

−
1

2
≤ bℓ,n <

1

2
, −Cℓ ≤ cℓ,m < Cℓ, (38)

for positive constants Cℓ.
To see that the NNFFT can be used for acoustic imaging, let the entries of

un be ux,n, uy,n, and similarly for vector pm. Note that the direction vector is

of the form un =
[
ux,n uy,n uz,n

]T
, with u2

x,n + u2
y,n + u2

z,n ≤ 1. Therefore,
the entries are in the range −1 ≤ ux,n, uy,n, uz,n ≤ 1.

Take for example the second entry of a product of the form r̂ = Aŷ. The
second row of A has the form

[
v∗1(u1)v2(u1) . . . v∗1(uN )v2(uN )

]

=
[

e−jωuT
1 (p1−p2)/c . . . e−jωuT

N (p1−p2)/c
]

.

The product of this row by a vector ŷ has therefore the form (37), with bn =
un/2, c2 = 2ω(p1 − p2)/(2πc) and D = I3 (the 3 × 3 identity matrix). The
other elements of r̂ have similar form, but now with cm = ω(pi − pℓ)/(πc) ,
for a particular pair (i, ℓ) satisfying 1 ≤ i, ℓ ≤ M . Choosing an ordering of the
differences pi − pℓ, we can use the NNFFT algorithm to compute the product

r̂ = Aŷ. The inputs hn to the NNFFT are the entries of ŷ and the outputs ĥi

are the entries of the product r̂.
Note that if the array is planar, we can define the coordinate system so that

the array lies in the x, y plane, such that pz,m = 0 for all microphones. In this
case (37) reduces to a two-dimensional transform (similarly, for a linear array
only a one-dimensional transform is necessary). Note that in these cases there
will be ambiguities between look directions: for example, a planar array cannot
distinguish between signals coming from its front or its back.

4.2 NFFT

The NFFT is a faster, but less general algorithm than the NNFFT [19], with a
restriction on vector bn in (37): the entries of bn must be integers

bℓ,n ∈ Z : −
Nℓ

2
≤ bℓ,n <

Nℓ

2
, (39)

for even Nℓ ∈ N. To satisfy these restrictions, we need to choose adequate look
directions un.

If one is interested in sampling the whole space, one could choose N = NxNy

with even Nx and Ny, and, in order to obey (39), we would need to choose a
uniform sampling:

ux,n =
2nx

Nx
, −

Nx

2
≤ nx <

Nx

2
, (40a)

uy,n =
2ny

Ny
, −

Ny

2
≤ ny <

Ny

2
. (40b)
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Defining bx,n = Nxux,n/2, by,n = Nyuy,n/2, we would obey (39) for direc-
tions x and y. However, un must have unit length, so for direction z we would

need uz,n = ±
√

1− u2
x,n − u2

y,n , and the sampling in the z-direction would not

be uniform.
A solution is to restrict ourselves to planar arrays, and choose the coordinate

system so that the x, y plane corresponds to the array plane. With this choice,
the microphone coordinates satisfy pz,m = 0 and the uz,n entries vanish in the
dot products uT

npm. The NFFT algorithm can then be used, with

bn =

[Nx

2 0 0

0
Ny

2 0

]

un, cm =
ω

2πc

[
2
Nx

0 0

0 2
Ny

0

]

pm, (41)

The fact that (40) allows u2
x,n + u2

y,n > 1 means that the transform would
compute images for directions that do not in fact exist. This results in a perfor-
mance loss (since we compute values that we do not need), but for large Nx, Ny

there is a net gain. Of course, one could choose ux,n, uy,n restricted to the inter-

val [−
√
2
2 ,

√
2
2 ), thereby guaranteeing that only values for true look directions

are evaluated, but losing information that might come from the edges of the
array. See Figure 5.

Acceleration with the FFT

One can verify that, if the microphones are placed in a uniform rectangular
grid, the look directions un are chosen through uniform sampling of ux and uy,
and if the frequency of interest ω is such that the distance between consecutive
microphones is half the wavelength, then the NFFT just described reduces to
the (much faster) FFT. Unfortunately for acoustic imaging this observation is
of little use, given that acoustic signals are broadband. In addition, when using
covariance fitting methods with regularization, non-uniform microphone arrays
lead to better results (see [25] and Section 6).

4.3 Kronecker array transform

Consider a planar array, with microphones placed in a rectangular grid such as
that shown in Figure 4. Assume that the coordinate system is chosen so that
the array lies in the x, y plane, and that the look directions un are chosen such
that

uℓ+(i−1)Ny
=






u1,i

u2,ℓ√

1− u2
1,i − u2

2,ℓ




 , 1 ≤ i ≤ Nx, 1 ≤ ℓ ≤ Ny,

where −1 ≤ u1,1 < u1,2 < · · · < u1,Nx
≤ 1, −1 ≤ u2,1 < u2,2 < · · · < u2,Ny

≤ 1.
In the notation of the previous sections, we are choosing ux,n ∈ {u1,1, . . . , u1,Nx

},
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Figure 5: Choice of look directions un according to (40), with Nx = 16, Ny = 8.
The blue circle is the “visible” region, for which u2

x + u2
y ≤ 1 (black squares).

If one wishes to avoid computing unnecessary points with u2
x + u2

y > 1 (white
squares), it suffices to choose (ux, uy) only inside the gray square, changing
the definition of bn and cm accordingly. This diagram corresponds to Figure 3
viewed from the top, with the array at the center.

uy,n ∈ {u2,1, . . . , u2,Ny
}, so that ux,n = u1,i, uy,n = u2,ℓ if n = ℓ + (i − 1)Ny.

Similarly, the microphone positions are such that

ps+(r−1)My
=





p1,r
p2,s
0



 , 1 ≤ r ≤ Mx, 1 ≤ s ≤ My.

In this case, the array manifold vector can be decomposed as follows:

v(uℓ+(i−1)Ny
) = vx(u1,i)⊗ vy(u2,ℓ), (42)

where

vx(u1,i)
∆
=








ejωu1,ip1,1/c

ejωu1,ip1,2/c

...
ejωu1,ip1,Mx/c







, vy(u2,ℓ)

∆
=








ejωu2,ℓp2,1/c

ejωu2,ℓp2,2/c

...

ejωu2,ℓp2,My/c







. (43)

This can be verified by direct comparison with (4), since

ejωuT
npm/c = ejωu1,ip1,r/cejωu2,ℓup2,s/c,
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for n = ℓ+ (i− 1)Ny, m = s+ (r − 1)My.

Under these conditions, matrix-vector products Aŷ, AH r̂ and AHAŷ can
be obtained in a more cost-effective way than by direct multiplication. Define
the matrices V x and V y as follows:

V x
∆
=








v∗x,1(u1,1)vx,1(u1,1) . . . v∗x,1(u1,Nx
)vx,1(u1,Nx

)
v∗x,1(u1,1)vx,2(u1,1) . . . v∗x,1(u1,Nx

)vx,2(u1,Nx
)

...
...

v∗x,Mx
(u1,1)vx,Mx

(u1,1) . . . v∗x,Mx
(u1,Nx

)vx,Mx
(u1,Nx

)







∈ C

M2
x×Nx ,

(44)

V y
∆
=








v∗y,1(u2,1)vy,1(u2,1) . . . v∗y,1(u2,Ny
)vy,1(u2,Ny

)
v∗y,1(u2,1)vy,2(u2,1) . . . v∗y,1(u2,Ny

)vy,2(u2,Ny
)

...
...

v∗y,My
(u2,1)vy,My

(u2,1) . . . v∗y,My
(u2,Ny

)vy,My
(u2,Ny

)







∈ C

M2
y×Ny .

(45)

Given a vector ŷ, define Ŷ such that ŷ = vec(Ŷ ), and Z = V yŶ V T
x . It

can be verified by direct computation that there exists a permutation matrix
H such that [26]

Aŷ = r̂ = H vec(Z) = H vec(V yŶ V T
x ). (46)

This is the Kronecker array transform. Taking advantage of the fact that ŷ and
Ŷ are real, computing the product Aŷ directly requires 0.5M2

xM
2
yNxNy com-

plex multiply-and-accumulate (MAC) operations, while using (46) the required
number of operations reduces to 0.5M2

yNxNy +M2
xNxNy complex MACs if we

compute V yŶ first, or to 0.5M2
xNxNy +M2

xM
2
yNy if we compute Ŷ V T

x first.

The products ŷ = AH r̂ and ȳ = AHAŷ can be similarly obtained. Define
Z̄ such that vec(Z̄) = HT r̂, and Ȳ such that ȳ = vec(Ȳ ), then

vec(AH r̂) = vec(V H
y Z̄V ∗

x), Ȳ = (V H
y V y)Ŷ (V T

xV
∗
x). (47)

Note that, since V H
y V y and V T

xV
∗
x can be pre-calculated, the use of the second

form of (47) is more efficient than computing V H
y (V yŶ V T

x )V
∗
x.

Simultaneous application of the KAT and NFFT or NNFFT

Since the entries of V x and V y are complex numbers with modulus equal to one,
the NFFT or the NNFFT can be used to compute the products in (46) and (47),
providing further acceleration to the KAT when the number of microphones and
of look directions are large enough3.

3Note however that V H
y V y and V T

xV ∗

x do not have only entries in the unit circle, so to use

the NFFT or the NNFFT to compute AHAŷ, one would need to compute V H
y (V yŶ V T

x )V ∗

x.
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Transform Computational cost

KAT with matrix multiplication O(MN +M2N1/2)
KAT with 1-D NFFTs O(N logN +MN1/2)
2-D NFFT O(N logN +M2)
2-D NNFFT O(N logN +M2)
Matrix multiplication O(M2N)

Table 1: Asymptotic complexity for different implementations of Aŷ, assuming
Mx = My and Nx = Ny.

x and y coordinates (m)
−0.1500 −0.1412 −0.1147 −0.0706 −0.0176 0.0441 0.1324 0.15

Table 2: x and y coordinates of a separable microphone array with 64 micro-
phones (shown in Figure 4). For all microphones, z = 0.

5 Computional cost

In Table 1 we list the asymptotic cost of different methods for the case Mx = My

(i.e., M = M2
x), Nx = Ny (N = N2

x). It is important however to remember that
the asymptotic costs in Table 1 do not show the constants multiplying each
entry, so from the table one cannot see for example that the NFFT is much
faster than the NNFFT.

For a practical application it is also important to consider memory require-
ments — for example, to directly store A, we would need M2N complex vari-
ables; while storing V x and V y requires 2MN1/2 complex variables (again in
the case of Mx = My and Nx = Ny), so using the KAT also reduces memory
storage considerably.

The expressions for computational cost give an idea of the advantages of
using the KAT, but a full comparison should take into account not only the
number of arithmetic operations, but also issues such as memory access and the
particular hardware in which the methods are implemented. Figure 6 compares
the time required to compute a product Aŷ, for different dimensions of A. The
computations were performed on a 64-bit Intel Core 2 Duo T9400 processor
using a single core. The permutation H was implemented in ANSI C, the
NFFT also used a C implementation with default optimization, as used in [19].
The remaining routines were implemented as m-files in Matlab 2008b.

6 Examples

We present now a few examples of simulated acoustic image reconstructions. In
all cases the microphones coordinates pm are as given in Figure 4. The exact
values of the coordinates are given in Table 2.

The examples (following [26]) are simulations of reconstructions of the test
images shown in Figure 7. The first test image simulates a sparse source distri-

20



4 8 12 16 20 24 28 32
10

−4

10
−3

10
−2

10
−1

10
0

Mx

Nx = Ny

= My

= 256

R
u
n
ti
m
e
(s
)

Figure 6: Comparison of runtimes for computation of Aŷ in Matlab. ▽: KAT
implemented with matrix multiplication; ×: KAT implemented with 1-D NFFTs
replacing matrix multiplication; +: direct NFFT implementation ; ∗: direct
NNFFT implementation; △: matrix multiplication. From [27].

bution. We compare the results obtained using DAS, DAMAS2, and covariance
fitting with ℓ1 and TV regularization. The regularized optimization problems
were solved using package routines SPGL1 [35] for solving (34), using 200 itera-
tions, with σ = 0.01‖Rx‖F

4. For the solution of (36) we used TVAL3 [23] using
100 iterations with µ = 103. DAMAS2 used 1,000 iterations. The simulations
were performed assuming an 8×8 microphone array, with microphone positions
as in Figure 4 and Table 2 (Mx = My = 8). The look directions were sampled
uniformly in ux, uy, using the entire range [−1, 1), with 256 points in each di-
rection (Nx = Ny = 256). Note that this means that the algorithms compute
values also outside the visible region (i.e., for points with u2

x + u2
y > 1). A good

test of the quality of reconstruction is to see only small (blue) values outside
the visible region. In the next figures, the visible region boundary (u2

x+u2
y = 1)

is marked with a black circle. The signals at the microphones were simulated
using the ideal image and model (5), assuming a frequency of 6 kHz, and a noise
variance set for an SNR of 20 dB.

The results for the sparse pattern can be seen in Figure 8, and for the
smoother pattern, in Figure 9. As expected, ℓ1 regularization has the best per-
formance for the sparse pattern, while TV regularization gives the best results
for the smoother pattern.

Finally, we present a comparison of results obtained using separable array
geometries with those obtained using a multi-arm logarithmic spiral geometry,
specially designed to reduce the sidelobes in the PSF [33], see Figure 10. As can
be seen in Figure 11, the result obtained with delay-and-sum algorithm using a

4‖ · ‖F is the Frobenius norm.
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Figure 7: Test images. On the left, a sparse pattern, and on the right, a
smoother test image.
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Figure 8: Results for (clockwise from top left) Delay-and-sum, DAMAS2, ℓ1 reg-
ularization and TV regularization, for the sparse pattern. From [26]
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Figure 9: Results for (clockwise from top left) Delay-and-sum, DAMAS2, ℓ1 reg-
ularization and TV regularization, for the smooth pattern. From [26].

50 cm, 63-element logarithmic spiral array is indeed better, compared with the
delay-and-sum reconstruction in Figure 9. However, the results obtained with
the other methods are comparable.

7 Practical considerations

All methods presented in section 3 assumed perfect knowledge of the relative
position of the sensors in the array, and that these sensors present the same
sensitivity response in terms of gain and phase. However, depending on how the
array is constructed, exact positioning of the microphones cannot be guaranteed.
Furthermore, microphones present a variation in their sensitivity response, even
when using microphones of the same model.

It is been shown that both variations in gain and phase, as well as micro-
phone positioning errors, result in distortions at the observed source’s direction
and sound level [20]. Several techniques have been described for calibrating the
microphone location. More conventional techniques require knowledge of the
exact position of the reference sources used for the calibration [2, 34]. Simul-
taneous calibration of the position and sensitivity of the microphones has also
been analyzed previously [31,39].

There have been attempts to conduct calibration without prior knowledge
of the reference sources [11,37]. This blind calibration algorithms first estimate
the position of the reference sources using some “direction-of-arrival” (DOA)
algorithm and assuming the nominal array configuration. Next, assuming the
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Figure 10: Multi-arm logarithmic spiral array, 50 cm in diameter, with 63 ele-
ments.
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Figure 11: Results for (clockwise from top left) Delay-and-sum, DAMAS2,
ℓ1 regularization and TV regularization, for the smooth pattern using the loga-
rithmic spiral array of Figure 10. One can see, comparing with Figure 9, that the
results here are better for DAS, but equivalent for the other methods. From [26].
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estimated directions of arrival are correct, the array parameters are estimated.
These algorithms repeat these two steps iteratively until the estimate converge.
This can be viewed as a joint estimation problem using “group alternating
maximization” [32].

Recently, the use of sparsity has been incorporated to the calibration proce-
dure [6]. Simulations demonstrate the effectiveness of the compressive sensing
approach to the calibration of even highly uncalibrated measures, when a suffi-
cient number of (unknow, but sparse) signals is provided [1, 12].

8 Conclusion

This chapter provides an introduction to acoustic imaging, describing the main
models and assumptions used in the field, and comparing some of the most im-
portant algorithms available in the literature. Since the computation of acoustic
images is a somewhat computationally demanding task, we emphasized recent
methods for speeding up computations, taking advantage of the structure of the
array manifold vectors in the far field. The three methods, in order of least to
highest acceleration, are the non-equispaced in time and frequency fast Fourier
transform (NNFFT), non-equispaced fast Fourier transform (NFFT), and the
Kronecker array transform (KAT). Although not described in this chapter, the
KAT can also be extended to work when some of the far-field approximations
are no longer valid, as described in [27].
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