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Revisiting the Kronecker Array Transform
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Abstract—It is known that the calculation of a matrix-vector
product can be accelerated if this matrix can be recast (or
approximated) by the Kronecker product of two smaller matrices.
In array signal processing the manifold matrix can be described
as the Kronecker product of two other matrices if the sensor
array displays a separable geometry. This forms the basis of
the Kronecker Array Transform (KAT), which was previously
introduced to speed up calculations of acoustic images with
microphone arrays. If, however, the array has a quasi-separable
geometry, e.g. an otherwise separable array with a missing
sensor, then the KAT acceleration can no longer be applied. In
this letter, we review the definition of the KAT and provide a
much simpler derivation that relies on an explicit new relation
developed between Kronecker and Khatri-Rao matrix products.
Additionally, we extend the KAT to deal with quasi-separable ar-
rays, alleviating the restriction on the need of perfectly separable
arrays.

Index Terms—Kronecker array transform, Khatri-Rao identity,
fast acoustic imaging, microphone array

I. INTRODUCTION

M ICROPHONE arrays are commonly used either as su-
perdirective microphones [1] or as acoustic cameras [2].

They differ in the fact that the first provides an estimate of the
time signal arriving from a given direction while the second
uses the estimate of the sound pressure levels at a number of
directions to generate a noise map (presented as a color map).

The standard algorithm for array processing is the delay-
and-sum beamformer (DAS) [1], [2]. Despite its simplicity,
the angular resolution obtained with this method is rather low,
which prompted several authors to propose improved estimation
algorithms [3]–[5]. As a tradeoff, these algorithms have a higher
computational complexity and, for a large number of micro-
phones, the computational cost may become prohibitive [6].

The Kronecker Array Transform (KAT) was introduced
in [6], [7] to accelerate the calculation of acoustic images,
essentially, by reorganizing the matrix-vector multiplication
structure for a special case of separable arrays. The original
KAT [6] was designed for acoustic camera applications. This
was latter extended to superdirective microphone algorithms
in [8]. In this letter, we present two main contributions. First,
we develop a general formulation for the KAT, which extends
the derivation for superdirective microphones proposed in [8]
to the original KAT for acoustic cameras. This results in a
much more compact derivation than the original in [6], through
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the use of a new relation developed between the Kronecker
[9] and the Khatri-Rao [10], [11] matrix products.

Furthermore, the KAT was originally only applicable to
arrays with separable geometry [6]–[8]. The second main
contribution we present in this letter is to relax this restriction,
generalizing the KAT to deal with quasi-separable arrays, i.e.,
separable arrays in which some positions in the grid may be
left empty. We conclude by analyzing the efficiency of the
generalized KAT.

II. PRELIMINARIES

We consider a sensor array composed of M microphones
at Cartesian coordinates p0, · · · ,pM−1 ∈ R3 being irradiated
by an arbitrary sound field which we wish to estimate. We
model the sound field as the superposition of the wave fields
generated by N acoustic point sources located at coordinates
q0, · · · ,qN−1 ∈ R3, where N is usually a large number in
order to obtain an accurate model.

The time-domain samples of each microphone are segmented
into frames of K samples, and each frame is converted to the
frequency domain using the fast Fourier transform (FFT). In
the presence of additive noise, the M × 1 array output vector
for a single frequency ωk (0 < k < K/2) on a single frame
can be modeled, according to [12], as

x(ωk) = V (ωk)y(ωk) + η(ωk), (1)

where y(ωk) = [f0(ωk) f1(ωk) · · · fN−1(ωk)]
T represents

the source signals in the frequency domain, and η(ωk) repre-
sents additive noise in frequency-domain. The array manifold
matrix V (ωk) = [v(q0, ωk) v(q1, ωk) · · · v(qN−1, ωk)], of
size M × N , describes the transfer function between each
source n and each sensor m at frequency ωk.

Assuming that the point sources are in the far field, we define
the look direction for source n as un = −qn/ ‖qn‖. The array
manifold vector for source n, according to [6], is modelled

as v(un, ωk) =
[
ej(ωk/c)u

T
np0 · · · ej(ωk/c)u

T
npM−1

]T
, where

c is the speed of sound.
There exist several techniques (e.g. [3], [4], [7], [13]) for

estimating ŷ(ωk) (for superdirective microphone applications)
or the average value of |ŷi(ωk)|2 (for acoustic camera applica-
tions, where ŷi(ω) is the i-th entry of ŷ(ωk), i = 0 . . . N − 1)
from the array output vector x(ωk), all of them requiring the
calculation of certain matrix-vector products involving V (ωk).

Reference [6] argues that, especially for iterative algo-
rithms and for large arrays, these matrix-vector products are
a calculation bottleneck. To speed up these calculations, [6]
proposes, based on the discussion in [14], to decompose the
manifold matrix V (ωk) in the Kronecker product of two smaller
matrices, which can be used to reorganize the computations
and significantly accelerate the above listed operations.
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III. KRONECKER ARRAY TRANSFORM

The KAT was introduced in [6] as a method to speed
up calculation of a class of acoustic imaging algorithms (as
discussed in Sec. IV). However, the reorganization of Kronecker
products can be used to speed up any problem modeled as a
matrix-vector product, as long as the matrix can be described as
the Kronecker product of two smaller matrices [14]. In [8], the
KAT was extended to be used with a larger group of acoustic
imaging and superdirective microphone algorithms, as we show
next.

As its name suggests, the KAT is obtained by applying the
above acceleration strategy to sensor arrays, more specifically,
to sensor arrays of separable geometry, which, as shown below,
guarantees that its separable manifold matrix V s can be recast
as a Kronecker product V s = V x ⊗ V y .

Let us first specify the enumeration p0, · · · ,pM−1 of the
sensing positions. Suppose the arrays is designed as an
Mx ×My rectangular grid (M = MxMy). We enumerate
the sensing positions ordered from top to bottom and from left
to right. Breaking pm into its Cartesian components results in

pm =
[
px (bm/Myc) py(mod(m,My)) 0

]T
, where px(m)

and py(m) are the x and y coordinates of the m-th microphone,
bmc represents the largest integer smaller than m, and mod(·)
represents the modulo operation. For simplicity, we assumed
the array to be horizontally oriented. The same enumeration
is used for the look directions u0, · · · ,uN−1 distributed in
a Nx × Ny rectangular grid (N = NxNy) with coordinates
ux(n) and uy(n) in the parametrized U-space [6].

The elements of a far-field manifold matrix associated to
the above listed separable array and U-space parametrized
rectangular scan grid are then given by

vs(m,n) = ej
ωk
c ux(bn/Nyc)px(bm/Myc)

× ej
ωk
c uy(mod(n,Ny))py(mod(m,My)).

(2)

We now define two new manifold matrices V x and V y,
whose elements are given below

vx(mx, nx) = e
jωkux(nx)px(mx)/c, (3a)

vy(my, ny) = e
jωkuy(ny)py(my)/c. (3b)

The horizontal array manifold matrix V x has size Mx ×Nx,
and the vertical array manifold matrix V y has size My ×Ny .
By comparing the inner structure of (2) with the inner structure
of (3), it can be verified that

V s = V x ⊗ V y. (4)

Recapitulating, as long as we have a planar sensor array
with separable geometry and we define a separable scan grid,
we guarantee that the corresponding far-field manifold matrix
can be decomposed as the Kronecker product of two more
compact manifold matrices, which will allow a speed up in
calculations, as discussed in [8]. For better comprehension, we
repeat the derivation of the Adjoint Fast Transform below.

A. Adjoint Fast Transform
The simplest algorithm for superdirectional microphones is

the DAS beamformer [1] that estimates the signals at each look-

direction from ŷ = V Hx/M . Given that the KAT conditions
are met, we can substitute V by V s and apply (4) to the adjoint
matrix-vector product, resulting in (apart from a constant M )

ŷ ∝ V H
s x = (V x ⊗ V y)

Hx. (5)

Using the well-known Kronecker product identity [9]

vec(BQAT ) = (A⊗B) vec (Q) , (6)

where A, B and Q are given matrices and vec(·) denotes
vectorization by stacking the columns of a matrix, we rewrite
(5) as

Ŷ = V H
y XV

∗
x, (7)

where ŷ = vec(Ŷ ) and x = vec(X). The source signal matrix
Ŷ ∈ CNy×Nx contains all values of ŷ arranged in the same
geometrical disposition as the scan grid, with the columns of
the matrix representing the vertical y-axis and the rows of the
matrix representing the horizontal x-axis. The same is valid
for the sensor signal matrix X ∈ CMy×Mx , which contains
the values of x arranged in the same geometrical disposition
as the sensors in the array.

We now discuss why the form in (7) is said to be a fast
transform of the adjoint matrix-vector product (5). We can
readily verify that calculation of the adjoint product V H

s x re-
quires MxMyNxNy complex multiply-and-accumulate (MAC)
operations. On the other hand, using (7) the required number of
operations reduces to MyNxNy +MxMyNx complex MACs
when XV ∗x is computed first, or to MxNxNy + MxMyNy

complex MACs when V H
y X is computed first.

If we assume that Nx = Ny =
√
N and Mx = My =

√
M ,

and additionally, that the number of microphones contained in
the array is substantially smaller than the number of scan points,
i.e. M � N , than a rough estimate of the acceleration provided
by the KAT lies in the order of

√
M , which is in agreement

with the acceleration estimated in [14]. Further acceleration
might be achieved using the NFFT and NNFFT algorithms
together with the KAT, as discussed in [2], [8]. However, for
the sake of brevity, we will refrain from this discussion here.

IV. KAT FOR CSM-BASED METHODS

Acoustic imaging algorithms generaly extract information
not from the raw data x, but from the array’s narrow-band
cross spectral matrix (CSM), defined as Rx = E{xxH}. The
KAT, as presented in [6], was applicable only to this class
of algorithms. We now present a new derivation for the KAT
with CSM-based methods (CSM-KAT), relying upon the more
general definition of the KAT presented in the previous section.
We achieve a more compact and less cumbersome derivation
then the derivation presented in [6] through the use of a, to the
best of the authors knowledge, new relation developed between
the Kronecker and the Khatri-Rao matrix products, presented
in Appendix A.

Ignoring the presence of noise and defining Ry to be the
CSM of y, we verify from (1) that

Rx = V RyV
H . (8)

Usually, CSM-based methods assume that all sources present
in the sound field are mutually uncorrelated [3], [13]. This
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assumption results in Ry being diagonal, and greatly simplifies
the calculations. We take advantage of the fact that Ry is
assumed to be diagonal in the new derivation of the CSM-KAT
by using the identity [11]

vec
(
BPAT

)
= (A�B) vecd (P ) , (9)

where P is a given diagonal matrix, vecd (·) is the vector
formed from the diagonal elements of a square matrix, and
A�B is the columnwise Khatri-Rao product [15], defined as

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aq ⊗ bq

]
, (10)

where aq and bq, represent the q-th column of A and B,
respectively.

Assuming that the KAT conditions are met, we substitute
V by V s and apply equality (4) into (8). Furthermore, we
assume that Ry is a diagonal matrix and apply identity (9) to
the previous result, which leads to

vec (Rx) =
[
(V x ⊗ V y)

∗ � (V x ⊗ V y)
]
vecd (Ry) . (11)

We use the Kronecker Khatri-Rao identity (28) and the
definitions Ṽ x ≡ (V ∗x � V x) and Ṽ y ≡

(
V ∗y � V y

)
to

rewrite (11) as

vec (Rx) = Ξ [(Ṽ x ⊗ Ṽ y) vecd (Ry)]
∆
= Ξ vec (Z) , (12)

where Z is such that vec (Z) is the term between brackets,
and Ξ is a permutation matrix.

We now define vec{Y} = vecd (Ry), where Y ∈ RNy×Nx

is the acoustic image sensed by a separable array. To conclude,
we apply identity (6) to matrix Z, defined in (12), resulting in

Z = Ṽ yYṼ
T

x , vec (Rx) = Ξ vec (Z) , (13)

which is exactly the CSM fast direct transform presented in [6].
We can further verify that the CSM adjoint transform

vecd(R̂y) = [Ξ(Ṽ x ⊗ Ṽ y)]
H vec(Rx), (14)

can be recast as the CSM fast adjoint transform [6], allowing
us to efficiently obtain the estimated acoustic image Ŷ from

vec(Z) = ΞT vec (Rx) , Ŷ = Ṽ
H

y ZṼ
∗
x. (15)

By combining (12) and (14) and using the Kronecker “mixed
product rule” [16]—note that ΞTΞ equals the identity matrix
as the permutation matrix is an orthogonal matrix—we obtain
the direct-adjoint transform in the form

vecd(R̂y) = (Ṽ x ⊗ Ṽ y)
H(Ṽ x ⊗ Ṽ y) vecd (Ry)

= [(Ṽ
H

x Ṽ x)⊗ (Ṽ
H

y Ṽ y)] vecd (Ry) ,
(16)

which can be recast in the CSM fast direct-adjoint transform

Ŷ = Ṽ
H

y Ṽ yYṼ
T

x Ṽ
∗
x. (17)

As discussed in [6], implementing the direct-adjoint transform
as Ŷ = (Ṽ

H

y Ṽ y)Y(Ṽ
T

x Ṽ
∗
x) can be much faster than using a

composition of the direct and adjoint CSM-KAT as for large
problems one can precompute Ṽ

H

y Ṽ y and Ṽ
T

x Ṽ
∗
x, which are

real-valued matrices. In fact, letting vy,i denote the i-th column

of V y , the (i, j)-th element of Ṽ y is[
Ṽ

H

y Ṽ y

]
i,j

=
(
v∗y,i ⊗ vy,i

)H (
v∗y,j ⊗ vy,j

)
=
(
vHy,ivy,j

)∗ ⊗ (vHy,ivy,j)
=
∣∣vHy,ivy,j∣∣2 .

(18)

Note that in the last equality, we used the fact that vHy,ivy,j is
a scalar, so the Kronecker product reduces to a regular product.

V. GENERALIZED KAT FOR QUASI-SEPARABLE ARRAYS

The KAT was developed under the assumption that the
microphone array possesses separable geometry, as discussed
in section III. However, an array with separable geometry may
not be available, e.g., because some elements of a separable
array were damaged and, thus, need to be discarded, resulting
in an array with quasi-separable geometry.

To apply the KAT in such cases, we define a “virtual” output
vector xs = V sy generated from a “virtual” separable array
with the least number of sensors M that contain all M ′ elements
of the non-separable array of interest (with output vector x),
such that

x = Γxs = ΓV sy = Γ (V x ⊗ V y)y. (19)

The matrix Γ ∈ RM ′×M is a selection matrix built by setting
[Γ]m,n = 1 when the mth element of x is equivalent to the nth

element of xs and [Γ]m,n = 0 otherwise.
From (19) we can easily verify that the generalized direct

fast transform is now given by

Xs = V yY V
T
x , x = Γ vec {Xs} . (20)

Note that Xs contains M −M ′ dummy entries, that are com-
puted by the KAT, but are discarded when computing x. As we
show below, this procedure is efficient when M ′ is large enough.

The adjoint transform y = [Γ (V x ⊗ V y)]
Hx results in the

generalized adjoint fast transform

vec {Xs} = ΓTx, Ŷ = V H
y XsV

∗
x. (21)

Finally, combining (20) and (21) results in the generalized
direct-adjoint fast transform

Xs = V yY V
T
x , X̂s = G ◦Xs,

Ŷ =V H
y X̂sV

∗
x,

(22)

where ◦ is the Hadamard-Schur matrix product, and vec{G} =
vecd{ΓTΓ}. Please note it is not possible to inlay the influence
of Γ into V x or V y to arrive in a formulation similar to (17).

A. Generalized CSM-KAT
In the same manner described in the previous section, we

can also generalize the application of the CSM-KAT for quasi-
separable arrays. To do so, we observe that

vec (Rx) = (V ∗ ⊗ V ) vec (Ry)

=
[
(ΓV s)

∗ ⊗ (ΓV s)
]
vec (Ry)

= (Γ∗ ⊗ Γ) (V ∗s ⊗ V s) vec (Ry) .

(23)

Equation (23) shows us that, for CSM based methods, the
calculation with a quasi-separable array can be directly related
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to the calculations with a separable array by the selection
matrix W ≡ Γ∗ ⊗ Γ = Γ ⊗ Γ. This result allows the use
of the CSM-KAT with quasi-separable arrays, resulting in the
generalized CSM fast direct transform

Z = Ṽ yYṼ
T

x , vec (Rx) =WΞ vec (Z) , (24)

the generalized CSM fast adjoint transform

vec(Z) = ΞTW T vec (Rx) , Ŷ = Ṽ
H

y ZṼ
∗
x, (25)

and the generalized CSM fast direct-adjoint transform

Z = Ṽ yYṼ
T

x , vec(Ẑ) = ΞTW TWΞ vec (Z) ,

Ŷ = Ṽ
H

y ẐṼ
∗
x.

(26)

Here, again, we cannot eliminate the influence of ΞTW TWΞ,
nor inlay its influence in Ṽ x or Ṽ y, being necessary to use
a composition of the previously presented direct and adjoint
transforms to calculate the direct-adjoint transform.

VI. EFFICIENCY OF THE GENERALIZED KAT
To evaluate the performance improvement obtained with the

generalized KAT we simulate1 a directional microphone using
DAS beamformer and compare calculation time of V Hx and
(21). We define a separable scan grid with Nx = Ny =

√
N

directions and use an array with M sensors placed on a grid
with separable geometry where L random sensors are defective,
thus resulting in an array with M ′ = M − L sensors placed
in a quasi-separable geometry. Fig. 1 compares the average
calculation time for an array with Mx = My = 8, making
evident the advantage of the generalized KAT.

Analytically, we verify that the matrix-vector calculation
requires M ′N complex MAC operations, while the generalized
KAT requires

√
M N +M

√
N complex MAC operations. The

acceleration obtained with the generalized KAT is estimated as

M ′√
M + M/

√
N
≤ M ′

2max
{√

M ,M/
√
N

} . (27)

If we assume that M � N , we see that the obtained
acceleration is roughly in the order of M ′/(2

√
M ). This

suggests that it is preferable to use the generalized adjoint
fast transform as long as L . M − 2

√
M .

It is important to observe that the generalized KAT will
likely not be effective if applied to a generic non-separable
array. If we repeat the previous simulation with a random array
containing M ′ sensors placed with no repetition in both x-
and y-coordinates we will need a “virtual” separable array
with M = M ′ ×M ′ positions. Direct calculation still requires
M ′N operations while the generalized KAT will now require
M ′N +M ′2

√
N complex MAC operations. This shows that

for general non-separable arrays the use of the generalized
KAT would not be advisable, as no acceleration is achieved.

VII. CONCLUSION

The contributions presented in this letter are twofold: (i)
a new (shorter) derivation of the CSM-KAT, linking it with

1All MATLAB files necessary to recreate this simulation are available at
http://ieeexplore.ieee.org, provided by the authors.

0.01

0.1

1

T
im

e
[m

s]

0 10 20 30 40 50 60

L

Nx = Ny = 64
Nx = Ny = 32
Nx = Ny = 16

Fig. 1. Average calculation time for the DAS algorithm when applied to
a separable array with Mx = My = 8 sensors positions and L (randomly
chosen) missing sensors. The dashed line represents calculation with the adjoint
matrix-vector product (5) while the straight line represents calculation with the
generalized adjoint fast transform (21). Simulation was done in Matlab R2014a
using a Intel Core2 Duo PC (3.16 GHz) with 1000 realizations per point.

the (more general) KAT through an explicit new relation
between Kronecker and Khatri-Rao matrix products; and (ii) a
generalization of the KAT to deal with quasi-separable arrays,
which allows the use of the fast transforms when microphones
in a separable array go defective.

APPENDIX A
PROOF OF THE KRONECKER KHATRI-RAO IDENTITY

Theorem 1. Let the matrices A =
[
a1 a2 · · · ap

]
,

B =
[
b1 b2 · · · bq

]
, C =

[
c1 c2 · · · cp

]
,

and D =
[
d1 d2 · · · dq

]
be compatibly partitioned

matrices, then

(A⊗B)� (C ⊗D) = Ξ [(A�C)⊗ (B �D)] , (28)

where Ξ is a permutation matrix.

Proof: Using the definitions of the Kronecker product and
the Khatri-Rao product we verify that

(A⊗B)� (C ⊗D) =
[
(a1 ⊗ b1)⊗ (c1 ⊗ d1) · · ·

(a1 ⊗ b2)⊗ (c1 ⊗ d2) · · · (a1 ⊗ bq)⊗ (c1 ⊗ dq) · · ·
(a2 ⊗ b1)⊗ (c2 ⊗ d1) · · · (a2 ⊗ bq)⊗ (c2 ⊗ dq) · · ·
(ap ⊗ b1)⊗ (cp ⊗ d1) · · · (ap ⊗ bq)⊗ (cp ⊗ dq)

]
.

(29)

The Kronecker product is associative but not commutative.
However, according to [10],

(a⊗ b) = P (b⊗ a), (30)

where P is a permutation matrix. Therefore, we verify that

(ai ⊗ bj)⊗ (ci ⊗ dj) = Iai ⊗ P (ci ⊗ bj)⊗ Idj =
= (I ⊗ P ⊗ I)[ai ⊗ (ci ⊗ bj)⊗ dj ] ≡

≡ Ξ[(ai ⊗ ci)⊗ (bj ⊗ dj)].
(31)

Applying equality (31) to (29) results in (28).
Starting from [(A�C)⊗ (B �D)] and applying identity

(31) will also result into (28), which concludes the proof.
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