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Abstract—We propose a new method to improve median plane
sound localization performance using a nonlinear representation
of head-related transfer functions (HRTFs) and a recommender
system. First, we reduce the dimensionality of an HRTF dataset
with multiple subjects using manifold learning in conjunction
with a customized intersubject graph (ISG) which takes into
account relevant prior knowledge of HRTFs. Then, we use a
sound localization model to estimate a subject’s localization
performance in terms of polar error (PE) and quadrant error
rate (QE). These metrics are merged to form a single rating
per HRTF pair that we feed into a recommender system.
Finally, the recommender system takes the low-dimensional
HRTF representation as well as the ratings obtained from
the localization model to predict the best HRTF set, possibly
constructed by mixing HRTFs from different individuals, that
minimizes a subject’s localization error. The simulation results
show that our method is capable of choosing a set of HRTFs that
improves the median plane localization performance with respect
to the mean localization performance using non-individualized
HRTFs. Moreover, the localization performance achieved by our
HRTF recommender system shows no significant difference to
the localization performance observed with the best matching
non-individualized HRTFs but with the advantage of not having
to perform listening tests with all individuals’ HRTFs from the
database.

Index Terms—Spatial Audio, HRTF, Manifold Learning, Rec-
ommender Systems

I. INTRODUCTION

AS augmented reality applications become more relevant,
there is an increasing effort in 3D audio research and

specifically in head-related transfer functions (HRTFs) to ob-
tain high quality spatial audio. HRTFs are the main component
of binaurally rendered 3D audio and are used to simulate
sound sources as if they were coming from arbitrary positions
in space [1]. HRTFs are complex-valued frequency functions
that model the relationships between human anatomy and a

Manuscript received March 12, 2018; revised April xx, 2018; accepted April
16, 2017. Date of publication May xx, 2018; date of current version May xx,
2018. This work was supported by São Paulo Research Foundation (FAPESP)
under Grant 2012/50468-6, Grant 2013/21349-1 and Grant 2014/14630-9,
National Counsel of Technological and Scientific Development (CNPq) under
Grant 308882/2013-0 and Grant 454082/2014-2, and CAPES. The associate
editor coordinating the review of this manuscript and approving it for
publication was Prof. Pasquale De Meo.

F. Grijalva, L. Martini and B. Masiero are with the School of Elec-
trical and Computer Engineering, University of Campinas, Campinas,
SP, Brazil, 13083-852 (email: {felipe84, martini}@decom.fee.unicamp.br,
masiero@unicamp.br).

S. Goldenstein is with the Institute of Computing, University of Campinas,
Campinas, SP, Brazil, 13083-970 (email: siome@ic.unicamp.br).

sound source before reaching the ears. These functions ideally
should be measured for each subject individually to avoid
poor localization performance due to mismatch of spatial cues
contained in the HRTFs [2].

However, HRTF measurement [3], [4] is a complex
procedure that requires an expensive apparatus (e.g. a
(semi-)anechoic chamber, in-ear microphones, and a loud-
speaker array). Moreover, it is usually time-consuming for
high-spatial resolutions and tiring for the participants.

In order to avoid such measurements, several alternatives
have been proposed, including theoretical [5], numerical [6],
and inference methods [7], [8]. In contrast to the above
mentioned physically-based techniques, in perceptual-based
techniques the subjects have an active role during the per-
sonalization process by tuning some parameters (e.g. PCA
weights [9]) for several target directions until they achieve
an acceptable spatial accuracy. However, this procedure might
also be time-consuming, depending on the ability of the human
listener and the number of parameters and target directions. An
alternative approach is to optimize these parameters through
the use of a machine learning algorithm where the listener is
required to localize a sound source with [10] or without [11]
knowledge of the target directions. There are also database
matching techniques [12] where the listener selects the best
HRTFs among a set of HRTFs from other subjects. Although
there is no need to tune any parameter, these methods still
require the listener to perform listening tests. In order to
speed up these techniques, it is desirable to find a way to
reduce the number of listening trials while still minimizing
the localization error.

In the light of facts exposed above, we propose the use
of a recommender system to find the best HRTF set, with
HRTFs for each direction selected from a larger HRTF dataset
constituted by HRTFs from multiple subjects, in order to
improve the listener’s localization performance in the median
plane. Our system recommends the best mixed HRTF set
by estimating a subject’s localization performance through a
human sound-source localization model [13]. Moreover, with
a small number of listening tests, our HRTF recommender
system achieves a performance statistically similar to the
best performance with non-individualized HRTFs but without
having to perform listening trials for every individuals HRTF
in the database.

Inspired by our previous works [7], [8], [14], the recom-
mender’s input feature vectors are low-dimensional HRTFs
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that we obtain using manifold learning in conjunction with a
customized intersubject graph (ISG) aiming to capture relevant
prior knowledge of HRTFs. The outputs of our recommender
system are the ratings that we obtain through the sound-
source localization model proposed by Baumgartner et al. [13]
(henceforth called the Baumgartner model).

Note that our approach is not an individualization technique
such as [10], [11]. Moreover, different from [10], in our
approach the listener is not aware of the target direction
as in [11]. We also use a human sound-source localization
model [13] which is more suitable than the regression model
used by [11] since it takes into account psychoacoustic factors.

The remaining of the manuscript is organized as follows. We
describe our recommender system in Section II. We present
the conditions of our simulations in Section III and we analyze
the results in Section IV. Finally, we conclude in Section V.

II. RECOMMENDER SYSTEM

Recommender systems are widely used to predict the
preference that a user would give to an item (e.g. books,
movies) [15]. Here, we are specifically interested in content-
based recommender systems (see Figure 1) where a feature
vector is available for each item (HRTF) and each rating
made by the users (localization accuracy). In Section II-A, we
describe how we obtain such feature vectors using a nonlinear
representation of HRTFs. Next, in Section II-B, we show how
the ratings were calculated through a sound-source localization
model. Finally, in Section II-C, we describe mathematically
the problem of content-based recommender systems and how
spatial audio fits into it.

Fig. 1: We construct a model by training a recommender
system using low-dimensional median plane HRTFs as feature
vectors and localization accuracy as ratings, obtained through
a nonlinear mapping and a human sound localization model,
respectively. For a new subject’s responses, our system recom-
mends the best mixed HRTF set constituted by HRTFs from
multiple subjects.

A. Nonlinear representation of HRTFs

Nonlinear dimensionality reduction techniques (i.e.
manifold learning) reduce a high-dimensional dataset
X = {x1, ...,xN} ⊂ RD represented by a D ×N matrix
of N sample vectors xi into a low-dimensional embedding
Y = {y1, ...,yN} ⊂ Rd represented by a d×N matrix of
N sample vectors yi, where d < D. Here, a datapoint xi

is the vector resulting from the concatenation of the left
and right Directional Transfer Function (DTF) magnitudes,
and yi are the feature vectors used in the recommender
system. A DTF is the component of an HRTF that is specific
to sound source localization. It is obtained by dividing an
HRTF by its direction-independent common component (i.e.
the component including spectral features such as the ear
canal resonance and microphone response [16]), which in
turn is calculated by averaging all HRTFs from a specific
individual [17].

A well-known manifold learning technique is Isomap [18]
which attempts to preserve the pairwise geodesic distance
(i.e. the distance over the manifold) in order to maintain
the intrinsic geometry of the data unlike PCA that retains
most variance and attempts to preserve pairwise Euclidean
distances. For example, in nonlinear manifolds such as in the
Swiss Roll dataset [19], PCA might map two datapoints as
near points (measured by the Euclidean distance), while their
geodesic distance is much larger.

Isomap has three steps. First, it takes into account the
datapoint neighborhood relationships by constructing a graph
G(V,E) from X, where each sample xi ∈ X represents a
node vi ∈ V . Two nodes vi and vj are connected by an edge
(vi, vj) ∈ E with length dX(xi,xj) if xi is one of the K
neighbors of xj . The edge length dX(xi,xj) is given by some
distance metric between xi and xj (e.g. Euclidean distance).
Then, we estimate the geodesic distances on the manifold
between each pair of points in X by computing the shortest
path between each corresponding pair of nodes in G. We
store these distances in the pairwise geodesic distance matrix
DG. Finally, we construct the d-dimensional embedding by
applying multidimensional scaling [20] (MDS) on DG to find
the d-dimensional coordinate vectors yi.

Since neighborhood selection presents an opportunity to
incorporate prior knowledge [21], instead of using common
approaches (e.g. K nearest neighbors) and inspired by our
previous works on HRTF personalization [7], [8] and inter-
polation [14], we construct the graph G by exploiting the
correlations among the HRTFs across directions and subjects
(we named it the Intersubject Graph, ISG), according to the
following criteria:

Criterion 1: if xi and xj represent datapoints of the same
location but different subject, then connect them. Instead of
applying Isomap separately for each subject as in [22], with
this criterion, we tried to exploit the correlation of HRTFs
among subjects across same directions. Using this criterion,
P − 1 neighbors were obtained, where P is the number of
subjects.

Criterion 2: Let xi and xj be datapoints of the same subject.
If xj is one of the ks datapoints spatially closest to xi, then
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Criterion 2

12 spatially  closest

Criterion 1

Fig. 2: Illustrative example of the ISG for P = 3 subjects
and ks = 12. Color represents same subject HRTFs, and φ
represents elevation.

connect them. The ks neighbors obtained from this criterion
emphasize the similarities between spatially close HRTFs of
the same subject.

It is straightforward to prove that the ISG is always con-
nected (see Fig. 2 for an illustrative example). Isomap takes
as parameters the number of neighbors, K, and the intrinsic
dimensionality, d. Due to our ISG, the number of neighbors
is fixed to K = P + ks − 1, i.e., P − 1 from Criterion 1 and
ks from Criterion 2. To estimate the intrinsic dimensionality
we use the maximum likelihood intrinsic dimensionality esti-
mator [23]. This estimator has been previously employed in
other manifold learning problems [19], [24] and tries to reveal
the intrinsic geometric structure of the observed data.

Note that there are other manifold learning methods that
could be used with our ISG procedure. For example Laplacian
Eigenmaps [25] which is similar to Isomap in that both con-
struct a graph representation of the datapoints. In contrast to
Isomap, Laplacian Eigenmaps attempts to preserve only local
properties of the manifolds based on the pairwise distances
between near neighbors [19].

B. Ratings from localization model

We use the model for sound-source localization in sagittal
planes proposed by Baumgartner et al. [13]. Although the
model is applicable to several sagittal planes within the lateral
range ±30◦ , we only focus on the median plane responses. In
this model, it is possible to predict the listener performance in
terms of localization error, which, in turn, can be interpreted as
the rating a subject would give to certain HRTF, i.e., the local-
ization accuracy obtained with that HRTF. Specifically, we use
the model to predict the localization error of listening through
non-individualized HRTFs in the median plane. Therefore, we
run a series of virtual psychoacoustic experiments to measure a
subject localization performance using others’ instead of their
own ears [13].

The model, that requires a listener-specific calibration, is
based on the comparison of an internal sound representation
with a template obtained from human listeners’ HRTFs. Since
it returns a probabilistic prediction of a polar angle response,
we are able to predict the localization performance through
local polar error (PE) and quadrant error rate (QE). For both,
we follow Middlebrooks [17] and define the PE as the RMS
average of polar errors that were less than 90◦ in magnitude,
and the QE as polar errors expressed in percentage form that
were larger than 90◦ .

We normalize the QE and PE to [0, 1] interval, where 1 rep-
resents the lowest error (i.e. better localization performance).
In order to obtain a single rating to use on the recommender
system, we calculate the rating z(i,j) by subject j using
HRTF i as the minimum between the normalized PE and
QE. We decided to use the minimum because if one of the
normalized metrics is low, the overall localization performance
is degraded, which in turn means that the corresponding low-
rated HRTF is not suitable for the listener.

C. Content-based recommender system

In content-based recommender systems, we have a
d-dimensional feature vector y(i) ∈ Rd+1 (i.e. including the
intercept or bias term) for each item i (e.g. movie, book). We
also have a set of ratings on certain scale (e.g. 5-star rating
scale) given by user j over a part of the i items we want to
recommend.

The goal is to predict user j ratings using a separate

linear regression model per user
(
θ(j)

)T
y(i), where θ(j) is a

parameter vector for user j. More formally, we want to learn
θ(j) by minimizing the following linear regression problem
per user

J = min
θ(j)

1

2

∑
i:r(i,j)=1

((
θ(j)

)T
y(i) − z(i,j)

)2

+
λ

2

d∑
k=1

θk
(j),

(1)
where r (i, j) = 1 if user j has rated item i (0 otherwise),
z(i,j) is the rating by user j on item i (if defined), and θk(j)

is the k-th parameter from the parameter vector θ(j). The last
term from Eq. 1 is an L1 regularizer which reduce overfitting
and encourage sparsity.

Since we are interested in more than one user, we can
reformulate Eq. 1 to include nu users as follows

Jm = min
θ(1),...,θ(nu)

1

2

nu∑
j=1

∑
i:r(i,j)=1

((
θ(j)

)T
y(i) − z(i,j)

)2

+
λ

2

nu∑
j=1

d∑
k=1

θk
(j) (2)

The cost function Jm from Eq. 2 can be optimized by
means of Gradient Descent or similar algorithms. Prior to
the optimization, we perform a mean normalization operation
on the ratings by subtracting the corresponding average item
rating µi. Hence, to make predictions of ratings, we need to
add back the corresponding mean, i.e.,(

θ(j)
)T

y(i) + µi (3)

In the context of binaural spatial audio, the items i that
we want to recommend are HRTFs. The feature vector
y(i) ∈ Rd+1 is the low-dimensional HRTF representation as
explained in Section II-A. The rating z(i,j) by subject j on
HRTF i is the predicted localization performance obtained by
the localization model as described in Section II-B.

Since in practice it is unfeasible that a user has rated
all the HRTFs in a database, we randomly selected only
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a limited number of ratings per direction from the the test
subject’s ratings. In real psychoacoustic experiments, it would
be equivalent to a user that performs a limited number of trials
per direction. Note that 0 trials per direction means that the
listener has not rated any HRTF. In this case, the recommender
system just returns the average rating for each HRTF as stated
in Eq. 3. Finally, our method recommends the HRTFs with the
highest predicted rating (i.e. lowest error) per direction. Note
that this implies that our method might recommend HRTFs
from different subjects, to be combined to form a new HRTF
set.

III. SIMULATIONS

Database and Localization model: Since the Baumgart-
ner localization model (implemented in the Auditory Modeling
Toolbox [26] as baumgartner2014) requires a listener-
specific calibration [13], the model is only available for 23
subjects, which are included in the 97 subjects from the ARI
database1. We used the localization model to calculate the
ratings for the 23 subjects. So, each of the 23 subjects has
ratings for all HRTFs from the whole ARI database, including
ratings for the listener’s own HRTFs. We only selected 44
directions corresponding to median plane HRTFs.

Pre-processing and Dimensionality reduction: We fil-
tered the HRTFs to preserve frequencies between 200Hz
and 18 kHz and calculated the DTFs. We then concatenated
the left and right ear DTFs into a single feature vector per
direction, as explained in Section II-A. Finally, we reduced
the dimensionality of the z-score scaled feature vectors (i.e.
normalized to have zero mean and unit variance). These
low-dimensional vectors serve as HRTF feature vectors for
the recommender system. We compared several linear and
nonlinear methods implemented in the Matlab Dimensionality
Reduction Toolbox [19]. With respect to linear methods, we
used PCA with 95% of variance retained. For nonlinear
methods, we implemented Isomap and Laplacian Eigenmaps
with our ISG (labeled as Isomap-ISG and LEM-ISG) and
without it (labeled as Isomap and LEM). For all nonlinear
methods, the maximum likelihood estimator [23] established
the intrinsic dimensionality to d = 13. With respect to the
ISG parameter ks, it should be chosen according to the spatial
resolution (5◦ for the ARI database in almost the entire median
plane) and the localization blur in the median plane which
varies from ±9◦ to ±22◦ [27]. For instance, we chose ks = 12
since the 12 spatially closest sampling points in ARI database
cover a ±30◦ region, i.e, it covers the entire region of the
maximum localization blur in the median plane at the 5◦

spatial resolution of the ARI database.
Recommender system predictions: We used a leave-one-

out cross validation scheme [28] to test the performance of
our method. To do so, We use the localization model of 23
listeners obtained from the ARI database. For each test subject
we select its HRTF feature vectors and train our model with
the HRTF feature vectors from the remaining 22 subjects.
This is done independently for each one of the 23 subjects
and the results are latter combined. The recommender was

1http://www.kfs.oeaw.ac.at/
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Fig. 3: Two-dimensional manifold recovered with Isomap
using our ISG. All components are normalized to have zero
mean and unit variance. Color represents elevation.

constructed using the ratings from all these 23 subjects on
the HRTF feature vectors of the remaining P = 96 subjects
(i.e. including the test subject’s ratings but excluding its
HRTF feature vectors). Since in practice a subject performs a
limited number of psychoacoustic experiments per direction,
we randomly selected only 0 to 8 ratings per direction from
the the test subject’s ratings. Finally, the regularization term
λ was selected using a grid search.

Metrics: Once we have the HRTFs with the highest
predicted rating per direction, we can evaluate them for a
specific listener using its Baumgartner model to estimate the
listener’s localization performance in terms of QE and PE.

IV. RESULTS AND DISCUSSION

Figure 3 shows the two-dimensional manifold (i.e. first
embedded dimension vs second one) recovered with Isomap
using our ISG. Observe that there is a strong correlation (the
correlation coefficient is 0.98) between the first component and
the elevation angle. A similar correlation coefficient (0.99) is
found for Laplacian Eigenmaps with our ISG whereas for PCA
the correlation coefficient is much lower (0.82).

Before analyzing the localization performance using our
recommender, we first analyze the localization performance
without it. For example, Fig. 4 shows the performance pre-
dicted by the Baumgartner model for subject NH12 when
using different HRTF sets from ARI database. As expected,
the best performance is obtained using the subject’s own
HRTFs. Observe also that the best performance with someone
else’s HRTFs is attained using the HRTFs of subject NH93.
Ideally, we expect that our recommender system achieves this
performance (i.e. the best performance with others’ HRTFs)
which is better than the mean performance with others’ HRTFs
(doted line in Fig. 4). It is worth mentioning that for subject
NH12 to achieve the best performance with others’ HRTFs (i.e.
with NH93’s HRTFs) without our recommender, the listener
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Fig. 4: Localization performance for subject NH12 when using
different HRTFs sets from ARI database.

0 1 2 3 4 5 6 7 8
26

28

30

32

34

36

38

40

42

P
o
la

r 
e
rr

o
r 
(d

e
g
re

e
s
)

LEM

PCA

ISO

ISO-ISG

LEM-ISG

0 1 2 3 4 5 6 7 8

Trials per direction

0

5

10

15

20

25

Q
u
a
d
ra

n
t 
e
rr

o
r 
(%

)

LEM

PCA

ISO

ISO-ISG

LEM-ISG

Own HRTFs

Others (best)

Others (mean)

Own HRTFs

Others (best)

Others (mean)

Fig. 5: Localization performance using our recommender as
a function of the number of trials per direction for subject
NH12.

should perform listening tests with the HRTFs from all 96
subjects, which is unfeasible in practice. For instance, to find
the best performance with others’ HRTFs by carrying out an
exhaustive search with three trials for each of the 44 median
plane directions on every ARI’s subject, a listener should
perform 44× 3× 96 = 12672 listening tests.

In contrast, Fig. 5 presents the localization error using

our recommender as a function of the number of trials per
direction for subject NH12. Note that ISO-ISG and LEM-
ISG outperform the other methods even with only one trial
per direction, reaching a better performance than the mean
and best performance with others’ HRTFs. Although there is
some minor improvement when increasing the number of trials
beyond three for both ISG conditions, the largest improvement
occurs during the first three trials per direction.

Since the ISG conditions have outperformed the others, the
remaining analysis will focus on LEM-ISG with three trials
per direction. In Fig. 6, for LEM-ISG, we show the localization
performance relative to the listener-specific performance with
its own HRTFs (i.e. the PE and QE variation). For example, the
8◦ PE variation for NH16 means that the recommended HRTFs
provide localization performance that is 8◦ worse than its
own HRTFs. In general, the proposed method has a tendency
to reduce the localization error with respect to the mean
performance with others’ HRTFs and in many cases the error
reduction is better than that achieved with the best HRTFs from
others. Note also that there are a few negative variations. For
instance, the negative PE variation for NH39 means that the
recommended HRTFs provide localization performance that is
roughly 1◦ better than its own HRTFs. On the other hand, for
NH42 the performance using our recommender is worst when
compared to the other subjects. This might be due to the fact
that even the best performance variation with others’ HRTFs
is relatively high with respect to the other individuals.

Finally, Fig. 7 shows the localization error for LEM-ISG
averaged across all subjects. The bars represent 95% confi-
dence intervals. Paired t-tests confirm that the recommended
HRTFs reduce the PE and QE errors with respect to the
mean performance with others’ HRTFs. Moreover, there is
no statistical significance between the performance with the
recommended and the best performance with others’ HRTFs,
which confirms that our recommender system actually im-
proves the localization performance without having to subject
the user to perform listening tests on HRTFs from all other
subjects on the ARI database aiming at finding the best
performance with HRTFs from someone else. For instance,
to achieve a similar performance to the best performance
with others’ HRTFs, our recommender would only need
44 directions × 3 trials/direction = 132 listening tests, in
contrast to the 12672 required by an exhaustive search. On the
other hand, the performance with the subject’s own HRTFs
is still better than the performance with the recommended
HRTFs.

V. CONCLUSION

We show that although the performance with the subject’s
own HRTFs is still better than the performance with the rec-
ommended HRTF set constructed by combining HRTFs from
different individuals, our HRTF recommender can actually
reduce the localization error with respect to the mean perfor-
mance with others’ HRTFs. Moreover, our technique achieves
a performance statistically similar to the best performance
with others’ HRTFs but with the advantage of not having to
perform long and tiring listening test on multiple subjects’
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Fig. 7: Localization performance averaged across subjects for
three trials per direction using LEM-ISG. Bars represent 95%
confidence intervals.

datasets looking for the best performance with HRTFs from
other listener. We also demonstrate that our ISG on manifold
learning techniques such as Isomap and LEM can reduce
the error with a small number of trials, outperforming PCA,
Isomap and LEM.

Although three trials per direction seems to be too much,
note that in practice the number of directions can be reduced
if the recommender system is used in conjunction with some
interpolation technique [14], [16]. For instance, if the listener
performs three trials per direction every 20◦ instead of every
5◦, the number of total trials would reduce drastically. Then,
an interpolation method might be used to increase the spatial

resolution.
Future works might try different criteria to construct the

manifold. For example, instead of taking only neighbors from
the same location in Criterion 1, we can select more HRTFs
from the vicinity in sagittal planes adjacent to the median
plane since it might occur that two subjects are not perfectly
aligned during measurement. Furthermore, in a future work,
it would be interesting to use more complex recommender
algorithms such as [29] to try to obtain a larger improvement
when increasing the number of trials beyond three.
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